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In this paper, a procedure is suggested to inversely determine the elastic constants of
anisotropic laminated plates using a progressive neural network (NN). The surface
displacement responses are used as the inputs for the NN model. The outputs of the NN are
the elastic constants of anisotropic laminated plates. The hybrid numerical method (HNM)
is used to calculate the displacement responses of laminated plates to an incident wave for
given elastic constants. The NN model is trained using the results from the HNM.
A modi"ed back-propagation learning algorithm with a dynamically adjusted learning rate
and an additional jump factor is developed to tackle the possible saturation of the sigmoid
function and to speed up the training process for the NN model. The concept of orthogonal
array was adopted to generate the representative combinations of elastic constants, which
reduces signi"cantly the number of training data while maintaining its data completeness.
Once trained, the NN model can be used for on-line determination of the elastic constants if
the dynamic displacement responses on the surface of the laminated plate can be obtained.
The determined elastic constants are then used in the HNM to calculate the displacement
responses. The NN model would go through a progressive retraining process until the
calculated displacement responses using the determined results are su$ciently close to the
actual responses. This procedure is examined for an actual glass/epoxy laminated plate. It is
found that the present procedure is very robust and e$cient for determining the elastic
constants of anisotropic laminated plates.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

Composites have been widely used in modern industry. From space shuttle, motor vehicle
to computer chip, composites have penetrated into every region of the modern technology
with their obvious advantages over those made of conventional materials. The e!ective use
of composites relies on a precise knowledge of the material property of the constituent
materials; hence, their property evaluation has been one of the focuses of research. It is
obviously valuable to develop a reliable method to non-destructively measure the
properties of composites.
Advanced non-destructive methods for material characterization of composites utilize

the complex relationship between the structure behaviors and the material property. This
relationship is often represented by a known mathematical model de"ning the forward
problem, which can be analyzed numerically or otherwise. Thus, if a set of reasonably
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd.



240 G. R. LIU E¹ A¸.
accurate experimentally measured structure behavior data is available, then the material
property of the composite may be identi"ed by solving an inverse problem properly
formulated. The material property can often be characterized by minimizing the sum of the
squares of the deviations between the experimental and the calculated structure behavior
data. Ultrasonic wave velocity has been used as the structure behavior data for
determination of elastic constants of anisotropic composites [1}3]. Rokhin and co-workers
[4}6] proposed several modi"cations of the immersion ultrasonic technique to determine
the elastic constants of composites. In these techniques, Christo!el equation was adopted to
establish the relationship between material properties and bulk wave velocity, comparably
complicated techniques were needed to measure the phase velocity of ultrasonic bulk waves
in anisotropic materials. Balasubramaniam and Rao [7] investigated the reconstruction of
material sti!ness properties of unidirectional "ber-reinforced composites from obliquely
incident ultrasonic bulk wave data. Genetic algorithms (GAs) were used as the inversion
technique and detailed discussion on advantages as well as disadvantages of GAs for the
identi"cation problem over conventional methods were presented. However, only single-ply
materials were considered in their works. Mota Soares et al. [8] presented a technique to
predict the mechanical properties of composite plate specimens using experimentally
measured eigenfrequencies. However, it can be generally concluded that these inverse
procedures require too many calls for forward solvers.
Neural network (NN) is a novel tool for information processing. It provides a unique

computing architecture, which enjoys a massive parallel processing structure. The
parallelism of NN enables it to solve many problems that cannot be handled by analytical
approaches. NNs provide an e!ective approach for engineering applications in a very broad
spectrum [9}11]. Furthermore, the NN technique is well known for its ability to model the
non-linear and complex relationship between the structure parameters and the dynamic
characteristics.
NN techniques have also been applied in solving inverse problems. Examples include the

reconstruction of constitutive properties using depth}load responses [12] and using either
group velocities, phase velocities or slowness measurements [13], and estimation of contact
forces from impact-induced strain [14] and prediction of impact contact forces [15]. There
is generally a well-de"ned forward problem that may have a solution, but the inverse
problem is often ill-posed, and conventional approaches often require computationally
intensive iterative processes to "nd a solution. NN approaches can o!er the advantages of
very high-e$cient inversion operation and can avoid the need for thousands of times of
calling of forward solvers. However, the relationship between the material property and the
wave responses can be extremely complex. It is very di$cult, if not impossible, to train an
NN model for such a relationship valid in a wide range of parameters.
In this paper, a novel progressive NN procedure is suggested for the determination of

elastic constants of anisotropic laminated plates. In the present NN model, the input data
are the dynamic displacement responses on the surface of the plate, which can be easily
measured using conventional experimental techniques.
There are two key factors governing the success of an NN in practical applications. The
"rst one is that the inputs of the NN models should be carefully chosen so that variation in
the outputs can be truthfully re#ected by the changes of these inputs. The second one is the
training samples, including both the initial training and the retraining, that should be
carefully selected in order to describe the inverse characteristics of the problems. In this
paper, the combination of response of time history of two displacement components is used
as the input for the NN model. The combined displacement response can still be easily and
accurately measured and is more sensitive to the change of the elastic constants than the
displacement response of only one component. The concept of orthogonal array is adopted
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to generate some representative combinations of parameter change. The use of orthogonal
array can signi"cantly reduce the number of training data while maintaining the data
completeness.
In the present procedure, the NN model is "rst trained o!-line using a set of initial

training data that contain various assumed elastic constants and their corresponding
displacement responses calculated using the hybrid numerical method (HNM) [16] as the
forward solver. A modi"ed back-propagation (BP) algorithm is used as the learning process.
The NN model is then used to determine the elastic constants of the laminated plate by
feeding in displacement responses. The determined elastic constants are then used in the
HNM to calculate the displacement responses. The NN model would go through
a progressive retraining process if the calculated displacement responses deviate
unacceptably from the actual ones.
This proposed procedure is veri"ed using two sets of elastic constants of glass/epoxy

laminated plates.

2. STATEMENT OF THE PROBLEM

Consider a laminated plate with any number of anisotropic layers in the thickness
direction. The thickness of the plate is denoted by H. An NN model is used for the
determination of elastic constants of anisotropic laminated plates. The outputs of the NN
model are elastic constants. The inputs of the NN model are the time history of
displacement responses on the surface of the laminated plate, which can be easily measured
using conventional experimental techniques. In this paper, we utilize computer-generated
displacement responses based on actual elastic constants of laminated plates. The incident
excitation waves to the plate are assumed to be a vertical line load in the z direction and
a shear line load in the y direction both acting at x"0 on the upper surface. The line loads
are independent of the y-axis but as a function of t as

f (t)"�
sin(2�t/t

�
) , 0(t(t

�
,

0, t)0 and t*t
�
,

(1)

where t
�
is the time duration of the incident wave. Equation (1) implies that the time history

of the incident wave is one cycle of the sine function.
Only one receiving point is chosen on the surface of the laminated plates, and the

responses in the time domain for displacement components in x and y directions are
selected as the inputs for the NN model.

3. AN NN PROCESS FOR DETERMINING ELASTIC CONSTANTS

An NN model is trained using initial training data containing a set of assumed elastic
constants, which represents various elastic constants of laminated plates, and their
corresponding displacement responses calculated from the HNM solver [16]. The trained
NN model is used to determine the elastic constants by feeding in the measured
displacement responses. The determined elastic constants are then used in the HNM solver
to calculate the dynamic displacement responses. The NN model would go through
a retraining process if the calculated displacement responses deviate unacceptably from the
actual ones. This progressive NN process for determination of the elastic constants of



Figure 1. A progressive learning NN model for determination of elastic constants of anisotropic laminated
plate.
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laminated plates is outlined in Figure 1. The detail of each part of this process will be given
in the following sections.

3.1. TEACHER

A neural network requires a large training set to successfully learn and to generalize the
characteristic features from input}output pairs. Consequently, it is essential that
the calculation of the forward problem is performed as e$ciently as possible to generate
the training data set. The HNM is employed as the teacher for training the NN model.
The HNM has been proven to be very e!ective in computing the response of a laminated
plate subjected to an incident wave. A brief description of the formulation of the HNM is
given as follows.
A laminated plate is divided into N-layer elements, as shown in Figure 2. A set of

approximate partial di!erential equations for an element is obtained by using the principle
of virtual work. By assembling the matrices of adjacent elements, we obtain the dynamic
equilibrium equation of the whole plate [16]

F(x, y, t)"K
�
d (x, y, t)#MdG (x, y, t), (2)



Figure 2. An anisotropic laminated plate subjected to a line load.

ELASTIC CONSTANTS OF ANISOTROPIC LAMINATED PLATES 243
where F is the external force vector acting on the nodal planes that divide the plate into
layer elements and d is the displacement vector on the nodal planes. The matrix K

�
is

a di!erential operator matrix for the plate.
The Fourier transformations can be introduced with respect to the horizontal

co-ordinates x and y as follows:

d� (k
�
, k

�
, t)"�

��

��
�
��

��

d(x, y, t)e����e����dxdy, (3)

where the real transformation parameters k
�
and k

�
are the wave numbers corresponding to

the horizontal co-ordinates x and y respectively.
The application of equation (3) to equation (2) leads to a set of dynamic equilibrium

equations for the whole laminated plate:

F� "Md�G#Kd� , (4)

where F� , d�G and d� are the Fourier transformations of F, dG and d respectively.
Using the model analysis, the displacement vector d� in the Fourier transformation

domain can be obtained; "nally, the displacement response in the space}time domain can be
obtained using the inverse Fourier transformation [17, 18].

3.2. PROGRESSIVE NEURAL NETWORK

An NN model is referred to as a type of computational model that consists of
hidden-layer neurons connected between the input and output neurons. The connections
between the neurons are described by weights which are to be determined through training.
The non-linear hyperbolic functions are usually used as the activation functions to increase
the modelling #exibility. The NN is trained with a modi"ed BP training algorithm.

3.2.1. ¹opology

An NN model, which consists of a set of nodes arranged into four layers as shown in
Figure 3, is used in this work. There are N inputs representing the displacement responses



Figure 3. A two-hidden layer NN model for determination of elastic constants of an anisotropic laminated
plate.
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on the surface and M outputs representing the elastic constants to be determined. As
commended by Masri et al. [19] that an NN model with two hidden layers is su$cient in
most of the structural problems, two hidden layers are used in this work. Mathematically,
the NN model represents a non-linear mapping between inputs X"�x

�
, i"1,2,N� and

outputs Y"�y
�
, i"1,2,M� via the following equation:

Y"g (W, X), (5)

whereW"�w�
��
, i"1,2,N

�
, j"1,2,N

�
; k"1, 2, 3� is a matrix of weights corresponding

to the connections between the layers, and N
�
and N

�
are the numbers of neurons for the ith

and jth layers respectively. Training of the NN model is referred to as the calculation of the
weight matrix W using the training data set. Once the training is complete, the NN
calculation is very fast regardless of the complexity of the actual physics of the problem.

3.2.2. ¸earning algorithm

A modi"ed BP learning algorithm with a dynamically adjusted learning rate and an
additional jump factor is employed as the learning algorithm. This learning algorithm can
overcome the possible saturation of the sigmoid function and speed up the training process
of the NN model. A brief description of the formulation of the modi"ed BP is given as
follows.
The error norm E between the determined output Y

	
vector and the targeted output

vector >
 can be de"ned as

E (W)"�Y
	
!Y
�

�
. (6)
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The operator � �
�
represents the vector norm. The weight matrix is adjusted iteratively

based on the following equations:

W	��"W	#�W	, (7)

�W	"!�
�E
�W �W"W	

#��
�E
�W �W"W	��

, (8)

where � is the learning rate, � is the momentum rate and I is the iterative number.
There are two important features in this modi"ed BP algorithm. Firstly, the learning rate

is adjusted once every p iterations instead of every iteration. Vogl et al. [20] originally
proposed this improvement for fast convergence that the learning rate varies according to
whether or not an iteration decreases the error norm. Luo and Hanagud [21] later adopted
this improvement using the dynamic learning rate steepest decent method. The dynamic
adjustment of the learning rate is used in this paper. The learning rate for the nth iteration is
represented as � (n), and it can be adjusted at the (n#p)th iteration based on the following
criterion:

� (n#p)"c�(n), (9)

where the range of c could be selected based on the numerical studies [22].
It can be found from equation (8) that the change of �W is not only dependent on the

learning rate �, but also on the partial derivative �E/�W. Then, another feature of the
modi"ed BP is that the jump factor is added in this modi"ed BP algorithm to avoid the
stagnation of the value of �E/�W as follows.
The derivatives in equation (8) can be written as
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�
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where the w�
��
is the weight coe$cient between the ith neuron in the kth layer and the jth

neuron in the (k#1)th layer, the o�
�
is the output from the jth neuron of the kth layer and
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where
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�
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�
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�

(12)

and f 
(z�
�
) is the "rst derivative of the activation function f ( ) with respect to z�

�
. The

activation function used in this work is a sigmoid function. In equation (11), � is the
additional jump factor for overcoming the stagnation of the weight matrix, the value should
be between 0 and 0)15 and can be varied during the training process. The purpose of adding
this small positive value to f 
 (z�

�
) is to maintain a non-zero 	�

�
value and prevent the weight

matrix from stagnation.
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3.2.3. Retraining of the NN model

After the initial training of the NN model, the determination of the elastic constants
begins by feeding the measured displacement response data X

�
into the NN model. The

outputs of the NN model are the determined elastic constants Y
	
. These determined elastic

constants are then fed into the HNM to produce a set of calculated displacement response
data X

�
. A comparison between the calculated displacement response X

�
and measured

displacement responses X
�
is made based on a given criterion. If these two sets di!er

signi"cantly such that the criterion is not satis"ed, then the NN model will be retrained
on-line using adjusted training samples that contain X

�
and Y

	
. The retrained NN model is

then used to determine the elastic constants again by feeding in the measured displacement
responses X

�
. This determination and on-line retraining procedure is repeated until the

di!erence between the calculated and measured displacement responses satis"es the given
criterion. At the end of the progression, the "nal determined elastic constants are
guaranteed to produce the displacement responses that are very close to the measured ones
when fed into the HNM.
Retraining of the NN model is achieved by adding new samples into the original pool of

samples and enforcing a more stringent convergence criterion. It has been pointed out that
it could be di$cult to achieve the same level of convergence while maintaining the same NN
architecture when the number of samples increases. To avoid this problem, a dynamic
adjustment method for selecting samples for retraining is proposed. While adding the new
sample related to the determined elastic constants by the NN model and the displacement
responses from the HNM, one sample from the original sample set should be removed so as
to maintain the same number of samples. The sample to be removed is the one that has the
largest distance norm from the measured displacement responses X

�
. The distance norm of

the displacement responses between the ith sample X
�
and the measured displacement

responses X
�
is de"ned as

d"�X
�
!X

�
��. (13)

By replacing this remote sample with a new sample, the sample density around the
measured displacement responses increases as the process progresses. As a result, the
modelling accuracy of the NN model in the neighborhood of the measured displacement
responses could be improved.

4. APPLICATIONS

This NN process for determination of the elastic constants of laminated plates is
illustrated using one actual laminated plate consisting of 10 glass/epoxy layers. The stacking
sequence of the laminated layers is denoted by [0/#45/!45/60/!60]



, where the digital

numbers stand for the angles of "ber-orientation of each ply to the x-axis. The subscript of
&&s'' means that the plate is symmetrically stacked. The glass/epoxy material is the
transversely isotropic material; there are only "ve elastic constants as listed in the second
column in Table 1 [23]. Hence, there are "ve parameters, named as c

��
, c

��
, c

��
, c

��
and

c
��
, that need to be determined.
The NN model used in this paper has two hidden layers, and the neuron numbers of the

input, output, "rst and second hidden layers are 10, 5, 30 and 16 respectively.

4.1. INPUTS OF THE NN MODEL

The displacement responses data on the surface of the laminated plate are selected as the
inputs. As a necessary condition for successfully utilizing the NNmodel, the sought outputs



Figure 4. Time history of displacement response in the x direction at x"3)0H on the upper surface of single-ply
glass/epoxy plate excited by an incident vertical wave of one cycle sine function at x"0)0. (a) , 30; ,
38; , 46; , 54. (b) , 4)0; , 5)33; , 6)66; , 8)0. (c) , 10)0; , 12)67; , 15)33;

, 18)0. (d) , 5)0; , 6)33; , 7)66; , 9)0. (e) , 2)0; , 2)67; , 3)33; , 4)0.
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should have signi"cant dependence on the input data. Therefore, in the "rst step, the e!ect
on the displacement responses of varying elastic constants is studied in detail. All the results
are based on the HNM, and the dimensionless variables de"ned by Liu et al. [16] are used.
Examples of the displacement response in the x direction at x"3)0H on the upper

surface of the single-ply glass/epoxy plate excited by an incident vertical line load of one
cycle of sine function at x"0)0 are displayed in Figure 4(a)}4(e). Figure 4(a)}4(e) show that
each of c

��
, c

��
, c

��
, c

��
and c

��
displays an appreciable in#uence on the response curve

when the other elastic constants are set to their actual values. However, the e!ect of



Figure 5. Time history of displacement response in the x direction at x"3)0H on the upper surface of single-ply
glass/epoxy plate excited by an incident vertical wave of one cycle sine function at x"0)0. (a) , 30; ,
38; , 46; , 54. (b) , 4)0; , 5)33; , 6)66; , 8)0. (c) , 10)0; , 12)67; , 15)33;

, 18)0. (d) , 5)0; , 6)33; , 7)66; , 9)0. (e) , 2)0; , 2)67; , 3)33; , 4)0.
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c
��

cannot be seen clearly (even no e!ect) from the response curve as shown in Figure 4(d).
To re#ect the e!ect of c

��
, we have to consider the component of displacement response in

the y direction subjected to a shear load in the y direction acting at x"0)0. The in#uences
of the change of the elastic constants on this displacement component are shown in
Figure 5(a)}5(e). It can be found that the in#uence of the change of elastic constant c

��
can

be clearly observed from Figure 5(d), but the e!ect of the changes of c
��

and c
��

cannot be



Figure 6. Time history of displacement response in the x direction at x"3)0H on the upper surface of single-ply
glass/epoxy plate excited by an incident vertical wave of one cycle sine function at x"0)0. (a) , 30; ,
38; , 46; , 54. (b) , 4)0; , 5)33; , 6)66; , 8)0. (c) , 10)0; , 12)67; , 15)33;

, 18)0. (d) , 5)0; , 6)33; , 7)66; , 9)0. (e) , 2)0; , 2)67; , 3)33; , 4)0.
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re#ected from the response of the displacement component in y direction, as shown in
Figure 5(a) and 5(b) respectively.
Figures 6 and 7 show the e!ect of the changes of the elastic constants on the response

curves for the 10-layer glass/epoxy [0/#45/!45/60/!60]


laminated plate. Similar to

the single-ply glass/epoxy plate, it can be found from Figure 6 that the response of
displacement component in the x direction is sensitive to the change of a number of the



Figure 7. Time history of displacement response in the x direction at x"3)0H on the upper surface of single-ply
glass/epoxy plate excited by an incident vertical wave of one cycle sine function at x"0)0. (a) , 30; ,
38; , 46; , 54. (b) , 4)0; , 5)33; , 6)66; , 8)0. (c) , 10)0; , 12)67; , 15)33;

, 18)0. (d) , 5)0; , 6)33; , 7)66; , 9)0. (e) , 2)0; , 2)67; , 3)33; , 4)0.
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elastic constants, but insensitive to the change of the other elastic constants. The same
phenomena can be found from Figure 7 for the displacement component in the y direction.
It is natural to expect that a combination of these two components of displacement
responses may be sensitive to the change of all the elastic constants of the laminated plate.
From the combination of Figures 6 and 7, it can be observed that there is a &&special region'',
which results from the change of the elastic constants. The signi"cant change occurs both in
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amplitude and pattern of the response curve within this region. The e!ect of the change of
the elastic constants on the displacement response is thus obviously re#ected. It is now
necessary to decide what special information from the displacement responses is to be
included in the input training sample. In this paper, two components of displacement
responses are used as the input of the NNmodel, one component is displacement responses
in the x direction subjected to a vertical line load in the z direction, another is displacement
responses in the y direction subjected to a shear load in the y direction. Considering the
features of Figures 6 and 7, the special region is located in the time duration [2)35, 3)25];
thus, we select the combination of responses of two displacement components of "ve points
in the time duration [2)35, 3)25], namely tN "2)35, 2)89, 2)98, 3)16, 3)25 as the inputs.

4.2. SIMULATED MEASUREMENT OF DISPLACEMENT RESPONSES

Instead of carrying out the actual experiment, the measured displacement responses are
simulated using the HNM with the actual elastic constants. In order to simulate the
measured displacement responses, noise-contaminated displacement responses are also
used for determination of elastic constants. A Gauss noise is directly added to the
computer-generated displacement responses to simulate the noise-contamination. A vector
of pseudo-random number is generated from a Gauss distribution with mean a and
standard deviation b using Box}Muller method [24]. In this work, the mean a is set to zero,
and the standard deviation b is de"ned as [25]

b"0)01��1/N�
�
�
���

u�
� �

�

�
�	�

, (14)

where u�
�
is the computer-generated displacement reading at the ith sample point.

4.3. TRAINING SAMPLES

The training samples for the initial training of the NN model consists of a number of sets
of inputs and outputs. These training samples should cover all possible values of elastic
constants. Obviously, it is impossible to generate all the combinations of elastic constants,
and hence a good cross-section of possible alterations is required.
In this paper, we proposed a method combining the orthogonal array with random

selection for generating training samples. The orthogonal array is a method developed for
the experimentalist to reduce the number of experimental trials normally required in a full
factorial experimental design. It allows an experimentalist to analyze the average change in
factor levels under di!erent sets of experimental conditions.We adopt this orthogonal array
method for the selection of part of the training samples. Assuming that there is no
interaction among the q parameters to be identi"ed, the number of samples required based
on the orthogonal array [26] for q parameters with p levels is q (p!1)#1. This sample
number is signi"cantly smaller than the complete sample number of p�. To further reinforce
the sample set, another sample group is created from a random selection of the parameters.
For this problem, a search range of $30% o! from the actual value of elastic constants is

used, and shown in Table 1. To formulate the initial training samples, it was assumed that
there were four levels of change in the search range for these "ve elastic constants, which
correspond to c

��
, c

��
, c

��
, c

��
and c

��
of their discrete values. Based on the orthogonal

array method, these "ve four-level parameters would only require 16 samples to cover the
whole domain. In addition, 21 other samples created randomly were added into the training



TABLE 1

¹he search range for the elastic constants to be reconstructed for
glass/epoxy laminated plates

Elastic
constants

Actual
data (GPa)

Search range
(GPa)

c
��

42)020 30}54
c
��

6)067 4}8
c
��

13)500 10}18
c
��

7)277 5}9
c
��

3)410 2}4
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data set. This combined strategy covers a good cross-section of all possible elastic constants
variations.

4.4. NORMALIZATION OF TRAINING DATA SETS

The NN model requires the normalization of the input and the output data. As the
sigmoid transfer function is used in the BP algorithm, the system cannot actually reach its
extreme values of 0 and 1 without in"nitely large weights. However, it is found better, in
practice, to normalize the input patterns as well as output patterns between 0)1 and 0)9 [27].
The inputs of the training samples are normalized linearly based on the following formulas:

xN
�
"

x
�
!x

����
#�

�
x
����

!x
����

#�
�

, (15)

where x
����

and x
����

are the minimal and maximal values of the ith input value x
�
,

respectively, in the sample data set, xN
�
is the normalized value of parameter x ranging

between 0)1 and 0)9. The �
�
and �

�
are the scaling factors for ensuring that the normalized

values would not be close to 0 or 1. The outputs can be normalized in exactly the same way.

4.5. RESULTS AND DISCUSSIONS

Two sets of elastic constants of the [0/#45/!45/60/!60]


glass/epoxy laminated plates

are determined using the present procedure. One set is the actual value listed in the second
column in Table 2. Another is an assumed arbitrary set of elastic constants from the search
range given for the "rst set, which is listed in the second column in Table 3. An NNmodel is
built for the determination of elastic constants of the actual [0/#45/!45/60/!60]



glass/epoxy laminated plate using training samples generated based on the range of actual
elastic constants. The NN model is then used to determine both the set of actual elastic
constants and the set of arbitrary elastic constants from the search range for the actual
elastic constants to validate the stability of the present procedure. The displacement
responses of the sample points on the upper surface of these two sets are calculated using the
HNMand used as inputs to the NNmodel. In order to simulate the measured displacement
responses, noise-contaminated inputs are used. The two types of displacement responses on
the "ve points in the time history are used as inputs, which are calculated using HNM, and
all the values of inputs and outputs in the training samples are normalized according to
equation (15).



Figure 8. The comparison of convergence of the error norm for the initial training: , modi"ed BP;
, BP.
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For comparison and validation of the presented modi"ed BP algorithm, Figure 8 shows
the convergence of the error norm for the NN model during the initial training stage. It is
found that the convergence of the conventional BP algorithm is not smooth and the
convergence is slower than that of the modi"ed BP algorithm.
Table 2 summarizes the reconstructed results of the elastic constants for the "rst case. The

results for six progressions are listed. It can be found that the result at the "rst progression is
not accurate as the maximum deviation is high, and the displacement responses
corresponding to these reconstructed elastic constants are quite di!erent from the simulated
ones using the actual values of elastic constants. A retraining for the NN model is required.
A new sample is created from the "rst determined result and the corresponding
displacement responses calculated from the HNM. The new sample is added into the
original sample pool to replace the sample with large distance norm. The retraining process
is repeated until the displacement responses corresponding to the reconstructed elastic
constants are su$ciently close to the simulatedmeasurements. Figure 9 shows the summary
of training or retraining error norm of the progressive NNmodel for determining the elastic
constants. The results at stages of progressive training are also listed in Table 2. It can be
seen from Table 2 that the accuracy of the determined results increases as the progression
number increases, and the determined result is very accurate after six progressions. The
maximum deviation of the sixth progression elastic constants is as low as 5%. It can also be
found that the determined result remains stable regardless of the presence of the noise, and
the required number of progression is not changed, even when the noise is added.
Another set of elastic constants of glass/epoxy [0/#45/!45/60/!60]



laminated plate is

also reconstructed. The result for this case is shown in Table 3. It can be found that very
accurate results can be obtained after six progressions, even though the maximum deviation
of the "rst reconstructed elastic constants is as large as 17)2%. Compared to the "rst case,
the maximum deviation of the "rst determined elastic constants is bigger but accurate
results can still be obtained. This can be explained as follows. The training samples are
selected based on a range of elastic constants for the "rst case; this set of samples is not the



TABLE 2

Reconstructed results of elastic constants of [0/#45/!45/60/!60]


glass/epoxy laminated plate (case 1)

Result (deviation) at progressions

Elastic
constants

Original
value (GPa) 1 2 3 4 5 6

(a) Noise free
c
��

42)020 41)311 (!1)7%) 41)642 (!0)9%) 42)991 (2)3%) 42)990 (2)3%) 42)930 (2)2%) 42)930 (2)2%)
c
��

6)067 5)395 (!11)1%) 6)695 (10)4%) 6)590 (8)6%) 6)520 (7)5%) 6)470 (6)6%) 6)275 (3)4%)
c
��

13)500 12)950 (!6)8%) 14)230 (5)4%) 14)020 (3)9%) 13)600 (0)7%) 13)871 (2)7%) 13)760 (1)9%)
c
��

7)277 7)920 (12)3%) 7)871 (8)2%) 7)883 (8)2%) 7)635 (4)9%) 7)655 (5)2%) 7)535 (3)6%)
c
��

3)410 3)745 (9)8%) 3)490 (2)4%) 3)535 (3)7%) 3)620 (6)2%) 3)571 (4)6%) 3)573 (4)8%)

(b) Noise added
c
��

42)020 40)980 (!2)5%) 43)564 (3)7%) 42)720 (1)7%) 42)720 (1)7%) 42)510 (1)2%) 42)360 (0)8%)
c
��

6)067 5)355 (!11)7%) 6)985 (15)1%) 6)555 (8)0%) 6)545 (7)9%) 6)440 (6)2%) 6)235 (2)8%)
c
��

13)500 12)980 (!3)9%) 13)930 (3)2%) 14)010 (3)8%) 13)51 (0)0%) 13)910 (3)0%) 13)780 (2)1%)
c
��

7)277 7)995 (9)9%) 7)565 (4)0%) 7)943 (9)1%) 7)455 (2)5%) 7)760 (6)6%) 7)640 (4)9%)
c
��

3)410 3)750 (10)0%) 3)390 (!0)6%) 3)550 (4)1%) 3)575 (4)9%) 3)573 (4)9%) 3)578 (4)9%)
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Figure 9. Summary of the "rst-four training error norm of the progressive NN model for determination of the
"rst set of elastic constants of the [0/#45/!45/60/!60]



glass/epoxy laminated plate: , progression 1; ,

progression 2; , progression 3; , progression 4.
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best suitable sample sets for the second case. However, after several progressive trainings,
the sample density around the simulated measurement of displacement responses increases
until the desired accuracy.
For a 6-time progressive NN model, the forward HNM solver has only been called for

42 times, compared to about 2500 times using the GA to solve the same problem. It can be
clearly concluded that this NN model for the determination of elastic constants is very
e$cient. This advantage of NN model is extremely signi"cant if the forward solver requires
longer CPU time for a single run.
It should be noted that the presented training algorithm is still slow and computationally

expensive even though it has been modi"ed. Using modern network architectures and
training algorithms may give further improvements in the presented NN procedures. As an
example, reference [10] has shown that the radial basis function (RBF) network with the
orthogonal least-squares algorithm can be trained signi"cantly faster than a multi-layer
network with BP.

5. A MORE COMPLICATED CASE STUDY

Now, we try to extend the presented NN procedure to a more complicated case
considering the same plate as described in section 4, but the material is graphite/epoxy [4].
This material is the orthotropic material; there are nine elastic constants as listed in the
second column in Table 4. Hence, there are nine parameters, named as c

��
, c

��
, c

��
, c

��
,

c
��
, c

��
, c




, c

��
and c

��
, which need to be determined. The search range is illustrated in

Table 4.
By exactly following the process described in section 4, the inputs of the model, training

samples are obtained. TheNNmodel used in this application has two hidden layers, and the
neuron numbers of the input, output, "rst and second hidden layers are 14, 9, 36 and 28
respectively. There are totally 36 training samples.



TABLE 3

Reconstructed results of elastic constants of [0/#45/!45/60/!60]


glass/epoxy laminated plate (case 2)

Result (deviation) at progressions

Elastic
constants

Original
value (GPa) 1 2 3 4 5 6

(a) Noise free
c
��

50)000 51)48 (3)0%) 50)430 (0)9%) 49)022 (2)0%) 48)990 (2)0%) 49)680 (0)6%) 50)040 (0)0%)
c
��

5)00 4)167 (16)7%) 4)995 (!0)1%) 4)560 (8)8%) 4)612 (7)8%) 4)650 (7)0%) 4)843 (3)2%)
c
��

12)00 11)370 (!5)3%) 13)000 (8)3%) 12)370 (3)1%) 12)070 (0)6%) 12)011 (0)1%) 12)256 (2)1%)
c
��

5)50 5)710 (3)8%) 5)971 (8)9%) 5)810 (5)6%) 5)525 (0)5%) 5)525 (0)5%) 5)710 (3)8%)
c
��

2)50 2)803 (12)1%) 2)420 (3)2%) 2)513 (4)0%) 2)440 (2)4%) 2)518 (0)7%) 2)528 (1)1%)

(b) Noise added
c
��

50)00 51)300 (2)6%) 50)220 (0)4%) 48)810 (2)4%) 48)810 (2)4%) 49)590 (1)2%) 50)04 (0)0%)
c
��

5)00 4)140 (!17)2%) 4)935 (1)3%) 4)510 (9)8%) 4)585 (8)3%) 4)635 (6)2%) 4)805 (3)9%)
c
��

12)00 11)390 (!5)1%) 13)050 (8)8%) 12)321 (2)7%) 12)100 (0)8%) 12)070 (3)0%) 12)260 (2)2%)
c
��

5)50 5)800 (5)5%) 6)115 (11)2%) 5)880 (6)9%) 5)610 (2)0%) 5)625 (2)3%) 5)780 (5)0%)
c
��

2)50 2)815 (12)6%) 2)438 (2)5%) 2)525 (1)0%) 2)453 (1)9%) 2)525 (1)0%) 2)358 (1)5%)
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TABLE 4

¹he search range for the elastic constants to be reconstructed for
graphite/epoxy laminated plates

Elastic
constants

Actual
data (GPa)

Search range
(GPa)

c
��

144)00 115}172
c
��

5)47 4)3}6)5
c
��

13)60 10)0}16)0
c
��

5)00 4)0}6)0
c
��

7)00 5)6}8)4
c
��

12)00 9)6}14)4
c




3)70 2)9}4)4
c
��

6)00 4)8}7)2
c
��

6)50 5)2}7)8

TABLE 5

Reconstructed results of elastic constants of [0/#45/!45/#60/!60]



graphite/epoxy
laminated plate

Result (deviation) at progressions

Elastic
constants

Original
value (GPa) 1 2 3

c
��

144)00 149)762 (4)0%) 145)295 (0)9%) 144)10 (0)0%)
c
��

5)47 5)934 (8)5%) 5)404 (!1)2%) 5)306 (!3)0%)
c
��

13)60 12)988 (!4)5%) 13)288 (!2)3%) 13)437 (!1)2%)
c
��

5)00 5)3244 (6)5%) 5)078 (1)6%) 5)072 (1)4%)
c
��

7)00 6)607 (!5)6%) 7)302 (4)3%) 6)891 (!1)6%)
c
��

12)00 12)289 (2)4%) 12)384 (3)2%) 12)147 (1)2%)
c




3)70 3)570 (!3)5%) 3)715 (0)4%) 3)859 (4)3%)
c
��

6)00 5)543 (!7)6%) 6)396 (6)6%) 6)040 (0)7%)
c
��

6)50 6)096 (!6)2%) 6)227 (!4)2%) 6)543 (0)7%)
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Table 5 summarizes the reconstructed results of the elastic constants for this complicated
case. It is found that very accurate results can be obtained after three progressions.
However, it should be pointed out here that the following limitations remain in these
results. As shown in Table 4, the search range of $20% o! from the actual value is used in
this case. This range is smaller than the range of $30% o! from the actual value in
section 4. As in our study, we cannot obtain the convergent solution in the search range of
$30%, e.g., the accuracy of the characterized results does not increase as the progression
number increases. It was found that this phenomenon is more obvious for the elastic
constants relating to the shear performance. This is due to the strong anisotropy of the
material. In addition, we cannot get accurate results using the noise-contaminated
displacement responses even by using the search range of $20% o! from the actual value.
For a successful extension of the presented procedure to more complicated cases, e.g., the

wide range of parameters and more parameters, the forward solver is directly applicable.
However, this inputs, training samples, the structures of the NN model as well as the
learning algorithm should be given individual consideration for individual applications.
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6. CONCLUSION

A progressive NN procedure is proposed for the determination of elastic constants of
anisotropic laminated plates, using dynamic displacement responses on the surface as the
input data. In this procedure, the HNM is employed as a forward solver to calculate the
displacement responses on the surface of the laminated plates. The NNmodel is trained and
retrained progressively using the calculated result from the HNM. A modi"ed BP
algorithm, which can overcome possible saturation of the sigmoid function and speed up
the training process, is adopted as the learning algorithm. The concept of orthogonal array
is proposed to generate the representative combinations of elastic constants, which reduces
signi"cantly the number of training data while maintaining its data completeness. After
several progressions of retraining the NN model, the elastic constants can be determined
from the retrained NN model, by feeding in the simulated measurement of dynamic
displacement responses. The determined result is stable regardless of the presence of the
noise. The accuracy of output from the NNmodel increases with the increase in the number
of retraining cycles, the required accuracy can therefore be obtained by repeating the
retraining process.
This paper mainly addressed the computational method of the material characterization

using elastic waves and NNs. The practical application of the presented NN procedure
relies on the tests of real structures, and the NN procedure should be validated using
practical experimental results. However, it should be noted that it is often very di$cult to
train an NN model for the complex relationship between material property and the
dynamic responses to be valid in a wide range of parameters and for more parameters.
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